7 research outputs found

    Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions

    Get PDF
    __Background:__ Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as a-amylases, leads to induction of the secretion stress-responsive CssR-CssS regulatory system, resulting in up-regulation of the HtrA and HtrB proteases. These proteases degrade misfolded proteins secreted via the Sec pathway, resulting in a loss of product. The aim of this study was to investigate the secretion stress response in B. subtilis 168 cells overproducing the industrially relevant a-amylase AmyM from Geobacillus stearothermophilus, which was expressed from the strong promoter P(amyQ)-M. __Results:__ Here we show that activity of the htrB promoter as induced by overproduction of AmyM was "noisy", which is indicative for heterogeneous activation of the secretion stress pathway. Plasmids were constructed to allow real-time analysis of P(amyQ)-M promoter activity and AmyM production by, respectively, transcriptional and outof- frame translationally coupled fusions with gfpmut3. Our results show the emergence of distinct sub-populations of high- and low-level AmyM-producing cells, reflecting heterogeneity in the activity of P(amyQ)-M. This most likely explains the heterogeneous secretion stress response. Importantly, more homogenous cell populations with regard to P(amyQ)-M activity were observed for the B. subtilis mutant strain 168degUhy32, and the wild-type strain 168 under optimized growth conditions. __Conclusion:__ Expression heterogeneity of secretory proteins in B. subtilis can be suppressed by degU mutation and optimized growth conditions. Further, the out-of-frame translational fusion of a gene for a secreted target protein and gfp represents a versatile tool for real-time monitoring of protein production and opens novel avenues for Bacillus production strain improvement

    Differential epitope recognition in the immunodominant staphylococcal antigen A of Staphylococcus aureus by mouse versus human IgG antibodies

    Get PDF
    The immunodominant staphylococcal antigen A (IsaA) is a potential target for active or passive immunization against the important human pathogen _Staphylococcus aureus_. Consistent with this view, monoclonal antibodies against IsaA were previously shown to be protective against _S. aureus_ infections in mouse models. Further, patients with the genetic blistering disease epidermolysis bullosa (EB) displayed high IsaA-specific IgG levels that could potentially be protective. Yet, mice actively immunized with IsaA were not protected against _S. aureus_ infection. The present study was aimed at explaining these differences in IsaA-specific immune responses. By epitope mapping, we show that the protective human monoclonal antibody (humAb) 1D9 recognizes a conserved 62-residue N-terminal domain of IsaA. The same region of IsaA is recognized by IgGs in EB patient sera. Further, we show by immunofluorescence microscopy that this N-terminal IsaA domain is exposed on the _S. aureus_ cell surface. In contrast to the humAb 1D9 and IgGs from EB patients, the non-protective IgGs from mice immunized with IsaA were shown to predominantly bind the C-terminal domain of IsaA. Altogether, these observations focus attention on the N-terminal region of IsaA as a potential target for future immunization against _S. aureus_

    Genetic loci of Staphylococcus aureus associated with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides

    Get PDF
    The proteinase 3 (PR3)-positive anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) granulomatosis with polyangiitis (GPA) has been associated with chronic nasal S. aureus carriage, which is a risk factor for disease relapse. The present study was aimed at comparing the genetic make-up of S. aureus isolates from PR3-ANCA-positive GPA patients with that of isolates from patients suffering from myeloperoxidase (MPO)-ANCA-positive AAV, and isolates from healthy controls. Based on a DNA microarray-based approach, we show that not only PR3-ANCA-positive GPA patients, but also MPO-ANCA-positive AAV patients mainly carried S. aureus types that are prevalent in the general population. Nonetheless, our data suggests that MPO-ANCA-associated S. aureus isolates may be distinct from healthy control- and PR3-ANCA-associated isolates. Furthermore, several genetic loci of S. aureus are associated with either PR3-ANCA- or MPO-ANCA-positive AAV, indicating a possible role for pore-forming toxins, such as leukocidins, in PR3-ANCA-positive GPA. Contrary to previous studies, no association between AAV and superantigens was detected. Our findings also show that a lowered humoral immune response to S. aureus is common for PR3-ANCA- and MPO-ANCA-positive AAV. Altogether, our observations imply that the presence or absence of particular virulence genes of S. aureus isolates from AAV patients contributes to disease progression and/or relapse

    Low anti-staphylococcal IgG responses in granulomatosis with polyangiitis patients despite long-term Staphylococcus aureus exposure

    Get PDF
    Chronic nasal carriage of the bacterium Staphylococcus aureus in patients with the autoimmune disease granulomatosis with polyangiitis (GPA) is a risk factor for disease relapse. To date, it was neither known whether GPA patients show similar humoral immune responses to S. aureus as healthy carriers, nor whether specific S. aureus types are associated with GPA. Therefore, this study was aimed at assessing humoral immune responses of GPA patients against S. aureus antigens in relation to the genetic diversity of their nasal S. aureus isolates. A retrospective cohort study was conducted, including 85 GPA patients and 18 healthy controls (HC). Humoral immune responses against S. aureus were investigated by determining serum IgG levels against 59 S. aureus antigens. Unexpectedly, patient sera contained lower anti-staphylococcal IgG levels than sera from HC, regardless of the patients' treatment, while total IgG levels were similar or higher. Furthermore, 210 S. aureus isolates obtained from GPA patients were characterized by different typing approaches. This showed that the S. aureus population of GPA patients is highly diverse and mirrors the general S. aureus population. Our combined findings imply that GPA patients are less capable of mounting a potentially protective antibody response to S. aureus than healthy individuals

    Specific associations between fungi and bacteria in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients

    Get PDF
    The detection of fungi in the human respiratory tract may represent contamination, colonization or a respiratory infection. To develop effective management strategies, a more accurate and comprehensive understanding of the lung fungal microbiome is required. Therefore, the objective of the present study was to define the “mycobiome” of mechanically ventilated patients admitted to an intensive care unit (ICU) using broncho-alveolar aspirate (“sputum”) samples and correlate this with clinical parameters and the bacterial microbiota. To this end, the mycobiome of 33 sputum samples was analyzed by Internal Transcribed Spacer2 (ITS2) amplicon sequencing of the ribosomal operons. The results show that in the investigated sputa of mechanically ventilated patients Candida spp. were most frequently detected, independent of pneumonia or antimicrobial therapy. The presence of Candida excluded in most cases the presence of Malassezia, which was the second most-frequently encountered fungus. Moreover, a hierarchical clustering of the sequence data indicated a patient-specific mycobiome. Fungi detected by culturing (Candida and Aspergillus) were also detected through ITS2 sequencing, but other yeasts and fungi were only detectable by sequencing. While Candida showed no correlations with identified bacterial groups, the presence of Malassezia and Rhodotorula correlated with oral bacteria associated with periodontal disease. Likewise, Cladosporium correlated with other oral bacteria, whereas Saccharomyces correlated more specifically with dental plaque bacteria and Alternaria with the nasal-throat-resident bacteria Neisseria, Haemophilus and Moraxella. In conclusion, ITS2 sequencing of sputum samples uncovered patient-specific lung mycobiomes, which were only partially detectable by culturing, and which could be correlated to specific nasal-oral-pharyngeal niches

    IgG4 subclass-specific responses to Staphylococcus aureus antigens shed new light on host-pathogen interaction

    No full text
    IgG4 responses are considered indicative for long-term or repeated exposure to particular antigens. Therefore, studying IgG4-specific antibody responses against Staphylococcus aureus might generate new insights into the respective host-pathogen interactions and the microbial virulence factors involved. Using a bead-based flow cytometry assay, we determined total IgG (IgGt), IgG1, and IgG4 antibody responses to 40 different S. aureus virulence factors in sera from healthy persistent nasal carriers, healthy persistent noncarriers, and patients with various staphylococcal infections from three distinct countries. IgGt responses were detected against all tested antigens. These were mostly IgG1 responses. In contrast, IgG4 antibodies were detected to alphatoxin, chemotaxis inhibitory protein of S. aureus (CHIPS), exfoliative toxins A and B (ETA and-B), HlgB, IsdA, LukD,-E,-F, and-S, staphylococcal complement inhibitor (SCIN), staphylococcal enterotoxin C (SEC), staphylococcal superantigen-like proteins 1, 3, 5, and 9 (SSL1,-3,-5, and-9), and toxic shock syndrome toxin 1 (TSST-1) only. Large interpatient variability was observed, and the type of infection or geographical location did not reveal conserved patterns of response. As persistent S. aureus carriers trended toward IgG4 responses to a larger number of antigens than persistent noncarriers, we also investigated sera from patients with epidermolysis bullosa (EB), a genetic blistering disease associated with high S. aureus carriage rates. EB patients responded immunologically to significantly more antigens than noncarriers and trended toward even more responses than carriers. Altogether, we conclude that the IgG4 responses against a restricted panel of staphylococcal antigens consisting primarily of immune modulators and particular toxins indicate important roles for these virulence factor
    corecore